This function allows to efficiently calculate precipitation statistics from Worldclim for polygons. For each polygon, the desired statistic/s (min, max, sum, mean, median, sd or var) is/are returned.
Value
A function that returns an indicator tibble with precipitation statistics as variable and corresponding values as value.
Details
The required resources for this indicator are:
precipitation layer from worldclim_precipitation
Examples
# \dontrun{
library(sf)
library(mapme.biodiversity)
outdir <- file.path(tempdir(), "mapme-data")
dir.create(outdir, showWarnings = FALSE)
mapme_options(
  outdir = outdir,
  verbose = FALSE
)
aoi <- system.file("extdata", "sierra_de_neiba_478140_2.gpkg",
  package = "mapme.biodiversity"
) %>%
  read_sf() %>%
  get_resources(get_worldclim_precipitation(years = 2018)) %>%
  calc_indicators(
    calc_precipitation_wc(
      engine = "extract",
      stats = c("mean", "median")
    )
  ) %>%
  portfolio_long()
aoi
#> Simple feature collection with 24 features and 8 fields
#> Geometry type: POLYGON
#> Dimension:     XY
#> Bounding box:  xmin: -71.80933 ymin: 18.57668 xmax: -71.33201 ymax: 18.69931
#> Geodetic CRS:  WGS 84
#> # A tibble: 24 × 9
#>    WDPAID ISO3  assetid indicator       datetime            variable unit  value
#>     <dbl> <chr>   <int> <chr>           <dttm>              <chr>    <chr> <dbl>
#>  1 478140 DOM         1 precipitation_… 2018-01-01 00:00:00 worldcl… mm     26.7
#>  2 478140 DOM         1 precipitation_… 2018-01-01 00:00:00 worldcl… mm     26.7
#>  3 478140 DOM         1 precipitation_… 2018-02-01 00:00:00 worldcl… mm     26.1
#>  4 478140 DOM         1 precipitation_… 2018-02-01 00:00:00 worldcl… mm     26.5
#>  5 478140 DOM         1 precipitation_… 2018-03-01 00:00:00 worldcl… mm     66.7
#>  6 478140 DOM         1 precipitation_… 2018-03-01 00:00:00 worldcl… mm     68.6
#>  7 478140 DOM         1 precipitation_… 2018-04-01 00:00:00 worldcl… mm     82.0
#>  8 478140 DOM         1 precipitation_… 2018-04-01 00:00:00 worldcl… mm     82.1
#>  9 478140 DOM         1 precipitation_… 2018-05-01 00:00:00 worldcl… mm    330. 
#> 10 478140 DOM         1 precipitation_… 2018-05-01 00:00:00 worldcl… mm    338. 
#> # ℹ 14 more rows
#> # ℹ 1 more variable: geom <POLYGON [°]>
# }
